

COURSE: RIGGER COMPETENCE REASSESSMENT - STAGE 4.

SCOPE AND APPLICABILITY:

The aim and objectives of the Rigger Competence Reassessment are to establish that the learner has maintained the competence requirements for the Rigger role.

TARGET GROUP:

The target group for Rigger Competence Reassessment are personnel that wish to renew their Rigger Competence or Rigger Competence Reassessment certificate (two-year validity for each certificate).

REGULATIONS & STANDARDS

- Standard 9099/9199 Rigger Competence Assessment and Reassessment;
- ISO 12480 Cranes Safe Use:
- International Marine Contractors Association - IMCA SEL 019, IMCA M 187;
- Offshore Mechanical Handling Equipment Committee - OMHEC;
- Health and Safety Executive HSE.

COURSE CONTENT:

- 1. Preparation for Lifting and Moving of Loads
 - 1.1. The hazards associated with a lifting operation
 - 1.1.1.Overloading
 - 1.1.2.Structural Failure
 - 1.1.3. Sudden Movements
 - 1.1.4.Inadequate Inspection
 - 1.1.5. Environmental hazards
 - 1.1.5.1. Wind
 - 1.1.5.2. Rain, snow or ice
 - 1.1.5.3. Visibility
 - 1.2. The purpose of a lifting plan and who produces one
 - 1.2.1.Routine Lifts and Non-Routine Lifts
 - 1.3. The purpose of a lifting risk assessment
 - 1.4. Why a Lifting Plan Must be Followed
 - 1.5. How to Determine the Weight of Loads
- 2. Key Roles in Lifting Operations
 - 2.1. The relevant roles of personnel involved in lifting operations
 - 2.1.1. Hierarchy
 - 2.1.2.Rigger
 - 2.1.3.Banksman
 - 2.1.4.Slinger
 - 2.1.5. Crane Operator
 - 2.1.6.Reporting Lines
- Comprehensive Rigging and Lifting Safety and Procedures
 - 3.1. How to Identify Areas Near the Load Where it is Unsafe to Stand
 - 3.2. Load Movement Route Planning Methods and Techniques
 - 3.2.1.Load Capacity Analysis
 - 3.2.2.Rigging Plan
 - 3.2.3.Lift Planning Software
 - 3.2.4.Lift Path Analysis
 - 3.2.5. Pre-Lift Meeting
 - 3.3. Areas of the Installation/Site which Need Special Consideration
 - 3.3.1. Electrical lines and equipment

- 3.3.2. Personnel and bystanders
- 3.3.3. Overhead obstructions
- 3.3.4. Structural integrity of the installation or site
- 3.3.5. Environmental conditions
- 3.3.6. Equipment and rigging
- 3.4. Rigging Principles
 - 3.4.1.SWL
 - 3.4.2.WLL
 - 3.4.3. Difference Between SWL and WLL
 - 3.4.4. Identification of Safe Working Load
 - 3.4.5. Safety Margin
 - 3.4.6. Angles of lift
 - 3.4.7.Lifting equipment and lifting accessories are marked with SWL and WLL
- 3.5. Pre-use Inspections
 - 3.5.1.Independent Competent Person (ICP)
- 3.6. Load stability, Safety and Weight Distribution
 - 3.6.1. Determine the load weight
 - 3.6.2.Overall maximum dimensions of the load
 - 3.6.3. Check the lifting equipment
 - 3.6.4. Proper lifting technique
 - 3.6.5.Regular maintenance
 - 3.6.6.Determine the lifting point
 - 3.6.7.COG (Center of Gravity)
- 3.7. The Types of Faults
 - 3.7.1.Mechanical faults
 - 3.7.2. Electrical faults
 - 3.7.3. Structural faults
 - 3.7.4. Human error
- 3.8. Toolbox Talk
- 3.9. Handovers During Lifting Operations
- Types of lifting accessories
 - 3.10.1. Slings
 - 3.10.1.1. Synthetic Slings

EVOTP1324 V1.0 21082023 Pag. 1 / 4

HUMAN SAFETY SOLUTIONS	
3.10.1.2. Critical safety issues to	3.10.11.2. Acid Damage
consider when using synthetic	3.10.11.3. Cuts
slings	3.10.11.4. Missing or Illegible
3.10.1.3. Chain Sling	Identification
3.10.1.4. Alloy Chain Slings	3.10.12. Broken Wires, Corrosion,
3.10.1.5. Wire Rope Sling	and Deformation to Wire Rope
3.10.1.6. Sling Configuration	3.10.13. Broken or Damaged
3.10.2. Hooks and Latches	Rigging Hardware
3.10.2.1. Hook Inspection	3.11. Rigging Loft
3.10.2.2. Load Hook Inspection	3.12. What Should You do if You Think
3.10.3. Shackles	Your Equipment is Not Safe?
3.10.3.1. Shackles inspection	3.13. Quarantine System
3.10.4. Spreader and Equalizer Beams	3.14. Dynamic Factors
3.10.4.1. Spreader and Equalizer	3.15. Communication system
Beams Inspection	3.15.1. Hand signals
3.10.5. Turnbuckles	4. Lifting, Moving, Lowering and Landing of a
3.10.5.1. Turnbuckles Inspection	Load
3.10.6. Cable Clips	4.1. Pre-use and post-use Inspection of
3.10.7. Pad Eyes, Eyebolts, Other	Lifting Equipment
Anchor Points	4.2. How to Identify and Report
3.10.8. Sheaves and Blocks	4.2.1. Visual inspection
3.10.8.1. Typical Block	4.2.2.Testing
Components	4.2.3.Maintenance records
3.10.8.2. Blocks Mechanical	4.2.4.Reporting
Advantages	4.3. Correctly Store
3.10.9. Rings, Links, Swivels	4.3.1.Chains and slings
3.10.10. Dispose of waste	4.3.2.Shackles
materials	4.3.3. Hoists and winches
3.10.10.1. Wire rope and wire rope	4.3.4.Lifting beams and spreader bars
slings	4.3.5.Hooks
3.10.10.2. Alloy chain slings	4.3.6.Synthetic slings
3.10.10.3. Synthetic web slings	4.4. Restore the Worksite
3.10.10.4. Synthetic round slings	4.4.1.Move the load
3.10.10.5. Lifting hardware	4.4.2.Lower the load
3.10.11. Damage to Synthetic	4.4.3.Return the equipment
Slings	4.4.4.Clean up the area
3.10.11.1. Abrasion	4.5. Post-Work Debriefings

COURSE DESIGN:

Theoretical – 12 hours Practical – 8 hours

TOTAL: 20 hours

Prerequisite(s):

Learners must possess a valid Rigger Competence or Rigger Competence Reassessment Certificate.

MINIMUM/MAXIMUM NUMBER OF DELEGATES

This course requires a minimum of 2, and a maximum number of 4 trainees.

The assessor-to-learner ratio is 1:1 (while four learners may be assessed within the group of learners, the assessor can only fully assess one learner at a time).

In instances where there are only two learners are under assessment, the training programme may be completed over the duration of a single day.

To offshore trainings, the course number of attendees will comply with the vessels/rig necessity.

EVOTP1324 V1.0 21082023 Pag. 2 / 4

MAIN SAFETY ISSUES:

- Special cares to avoid: Passing under the loads, placing the body parts between suspended loads or imminent movement cargoes;
- Know and use standardized manual signs as the main means of communication;
- · Hold pre-shift meetings;
- Previously know the location of escape routes;
- Conduct risk analysis;
- Be careful and identify inadequate atmospheric conditions;
- Communication between team and operator;
- Inspection of equipment.

REQUIRED EQUIPMENT:

- As a minimum, the following equipment is required to meet the stated content of the Rigger Competence Assessment:
 - 1. Appropriate PPE e.g., safety boots, safety helmet, eye protection, hearing protection and gloves;
 - 2. A variety of loads to be lifted e.g., structural steelwork, steelwork assemblies, pipework assemblies, plant and equipment, loads with an offset center of gravity etc.;
 - 3. Examples damaged lifting equipment and lifting accessories;
 - 4. Appropriate lifting equipment typically found in a workplace rigging loft, to include:
 - Chain blocks;
 - Lever hoists;
 - Snatch blocks;
 - Wire rope hoist (Tirfor);
 - Beam clamps (universal and standard);
 - Beam trolley;
 - Master links;
 - Shackles;
 - Chain Slings;
 - Wire rope slings;
 - Fiber slings;
 - Eye bolts and Eye nuts;
 - Swivel hoist rings;
 - Turnbuckles;
 - Jacks*;
 - Machine skates*.
- All equipment must be maintained, inspected and tested in accordance with applicable legislation and standards. Certificates and maintenance schedules should be always available.
- Note: Damaged lifting equipment purposely used for specific assessment criteria by the approved center - must be securely controlled and clearly identifiable to the assessor and center support staff.

EVOTP1324 V1.0 21082023 Pag. 3 / 4

PROCEDURE FOR PRACTICAL EXERCISES:

- Communicate, discuss and ensure understanding of the prepared lifting plan and risk assessment with the lifting team and ensure control measures are implemented;
- Carry out dynamic risk assessment for any additional potential hazards associated with the lifting operation;
- Implement any additional control measures to address the identified hazards;
- Communicate, discuss and agree with appropriate personnel, actions to take related to the lifting operation in the event of an emergency;
- Inform the relevant personnel of the lifting operation and identify any potential disruption to operations;
- Obtain the resources identified in the lifting plan required to move the load, following relevant rigging loft procedures;
- Carry out pre-use inspection of lifting equipment and certification is current;
- · Ensure the lifting equipment is free of obvious defects throughout the duration of the task;
- Prepare the load according to specified requirements of the lifting plan;
- Protect the load from damage during the lifting operation;
- · Attach the lifting accessories to the load using industry best practice;
- · Determine the center of gravity of a load that has an offset center of gravity;
- Install and position the lifting equipment for balanced weight distribution;
- Ensure appropriate barriers are installed at appropriate areas;
- Give clear instructions to the lifting team before and during the moving of the load;
- Use the identified method of communications derived from the risk assessment, lifting plan and permit-to-work, and comply with signaling protocols agreed within the lifting team, or companyspecific protocols;
- Progressively apply force/tension to the load via the attached lifting equipment, until the weight of the load is fully taken up;
- Confirm the load security before raising to the minimum height required for moving;
- Maintain load security and stability throughout transportation of the load;
- Take adequate precautions to maintain the safety of personnel and surroundings during the moving of the load;
- Correctly position the load in the intended location and progressively remove the lifting equipment force/tension;
- Safely disconnect the load from the lifting equipment and remove the lifting accessories
- Work effectively as part of a team;
- Compliance with relevant health and safety legislation and guidelines at all times.

CERTIFICATION:

Training certificate.

CERTIFICATE VALIDITY PERIOD:

2 years.

EVOTP1324 V1.0 21082023 Pag. 4 / 4